
3

Chapter 2 Language Features and Implementation Problems

This chapter describes several desirable language features, all of which are included in SELF: abstract data types,

message passing, inheritance, user-defined control structures, error-checking primitives, and generic arithmetic. For

each feature, we describe its advantages for programmers, its adverse implementation consequences, and typical

compromises made in other languages for the sake of efficient implementation. Those readers familiar with these

language features and implementation challenges may choose to skim this chapter.

2.1 Abstract Data Types

2.1.1 Benefits to Programmers

The ability to describe and manipulate data structures is central to the expressive power of a language. Traditional

programming languages such as C [KR78] and Pascal [JW85] include record and array data type declarations;

Lisp [WH81, Ste84], Prolog [SS86], and many functional programming languages [MTH90, Wik87, Pey87] include

cons cells. These type declarations build concrete data types. Manipulating concrete data structures is simply a matter

of extracting fields from records or cons cells and indexing into arrays.

Abstract data types [LZ74, LSAS77, LAB+81, LG86] provide a more expressive mechanism for describing and

manipulating data structures. An abstract data type abstracts away from a concrete data type by providing a set of

operations (the interface) through which clients are to manipulate objects of the type. The abstract data type is

implemented in terms of some lower-level data type (the representation), but this implementation is hidden from

clients behind the abstract data type’s abstraction boundary. For example, a canonical abstract data type is the stack

data type, supporting create, push, pop, top, and isEmpty operations and represented using an array of stack

elements and an integer top-of-stack index.

The enforced abstraction boundary provides advantages to both implementors and clients of abstract data types over

traditional concrete data types. Implementors are free to change the representation of an abstract data type, and as long

as the interface remains the same, clients of the abstract data type remain unaffected. For example, the stack data

type could be reimplemented using a linked list in place of an array and an integer, and clients would be unaffected.

Thus, abstract data types encapsulate design decisions that may change, especially those about the representation of

critical data structures.

For clients, abstract data types provide a more natural interface for manipulating data structures than the language

primitives used with concrete data structures. The operations on abstract data types can directly reflect the conceptual

operations on the data type the programmer has in mind, rather than being translated into series of extraction and

indexing operations. In the stack example, clients may use the more natural push and pop operations in place of

array indexes and integer increments. These abstract operations also improve the reliability of the system, since adding

a stack abstract data type

create

push

pop

isEmpty

top

abstraction boundary

external
 representation operations

for clients

4

an element to a stack is implemented in a single place and debugged once, rather than being repeated in every client

at every call.

Abstract data types also provide a principle for organizing programs. When using abstract data types, the task of

programming an application tends to revolve around identifying, designing, and implementing abstract data types. For

many applications, this orientation is better than the more traditional orientation of top-down refinement of procedures

and functions [Wir71]. In addition, libraries of common abstract data types are developed that may be reused in future

applications, reducing development and maintenance costs.

2.1.2 Implementation Effects

Widespread use of abstract data types greatly increases the frequency of procedure calls over traditional programming

styles using concrete data types. Each manipulation of a concrete data type, such as record field extraction or array

indexing, is a built-in language construct, easily implemented by simple compilers in a few machine instructions. With

abstract data types, however, each manipulation is conceptually a procedure call that invokes the programmer’s

implementation of the abstract operation. In a system with heavy use of abstract data types, many operations are

implemented by the programmer to just call lower-level operations on the representation data type, magnifying the

overhead of abstract data types.

To eliminate the run-time cost of abstraction, implementations can expand the body of a called procedure in place of

the procedure call; this technique is known as procedure integration or inlining. When an operation on an abstract data

type is invoked, the compiler can expand the implementation of the operation for that abstract data type in-line,

eliminating the procedure call. With aggressive use of inlining, the overhead of abstract data types can be virtually

eliminated, removing a performance barrier that might discourage the use of an important program structuring tool.

This inlining depends, however, on the fact that within a given program there is only a single implementation for a

particular abstract data type (this condition does not exist for object-oriented programming with message passing,

described next in section 2.2). If the implementation of an abstract data type changes, then the whole program may

need to be recompiled to inline the new operation implementations. Even in non-inlining implementations of abstract

data types, however, some amount of relinking after changing the implementation of an abstract data type is usually

necessary.

By inlining the implementation of an operation in place of its call, the compiler has in some ways violated the

abstraction boundary of the abstract data type. Fortunately, the compiler does not need to follow the same restrictions

as the human programmers, and so this “violation” is quite reasonable. Abstraction boundaries are great for people to

help organize their programs, but serve little purpose for the implementation.

2.2 Object-Oriented Programming

2.2.1 Benefits to Programmers

Object-oriented programming languages improve abstract data types by provide objects or classes instead [Weg87].

Object-oriented languages typically include two features not found in languages with only abstract data types: message

passing and inheritance.

2.2.1.1 Message Passing

With abstract data types, clients are insulated from implementation details of abstract data types, allowing the

implementor of an abstract data type to replace the implementation of the abstract data type with a new one without

rewriting client code. Unfortunately, only one implementation of an abstract data type can exist in the system at a single

time, and changing the implementation of an abstract data type is a compile-time operation that requires recompiling

and relinking an application with the new implementation.

Object-oriented programming languages rectify this problem, allowing multiple implementations of the same abstract

data type to coexist in the same application at run time. Client code does not depend on which implementation of an

abstract data type is being accessed, and in fact different implementations of the abstract data type can be manipulated

at different times by the same client code. For example, both array-based and stack-based implementations of stacks

can be manipulated by clients interchangeably.

5

To have this flexibility make sense, the operation invoked by some call must be determined dynamically based on the

actual implementation used in the call. For instance, when invoking the push operation on a stack (in object-oriented

terminology, sending the push message), the procedure that gets run (the method that implements the message)

depends on which implementation of stacks is being operated on. If the stack passed as an argument to the push

operation (receiving the push message) is a linked-list stack, then the linked-list-stack-specific push method should

be invoked; if the stack is an array-based stack, then the array-based-stack-specific push method should be run. Since

for different calls different stack implementations might be used, this determination of which push implementation

to invoke must be determined dynamically at run-time. Message passing is arguably the key to the expressive power

of object-oriented programming.

In a statically-typed language, variables are associated with types (typically by explicit programmer declaration but

sometimes by automatic compiler inference), and the type of a variable describes the operations that may be performed

on data values or objects stored in the variable. In traditional languages, including those with abstract data types, the

only data values that can be stored in a variable are those of the same type as the variable. In object-oriented languages,

where clients can manipulate objects of different implementations interchangeably via message passing, this

restriction on the types of objects stored in a variable is relaxed: an object can be stored in a variable as long as the

object supports at least the operations expected by the variable’s declared type. The object stored in the variable can

provide more operations that expected by the variable (can be a subtype of the variable’s declared type), since these

extra operations will be ignored by the client code. For example, client code that operates on stacks, say by sending

the push and pop messages, will continue to operate correctly on any other object that supports the push and pop

messages, such as a double-ended queue that supports both stack operations and additionally push_bottom and

pop_bottom operations to add and remove elements from the opposite end of the stack.

In general, the various types of objects in a system form a lattice, with more general types (i.e., types with fewer

required operations) higher in the lattice and more specific types lower in the lattice. In most object-oriented languages

this type lattice is restricted to be the same as the implementation inheritance graph (implementation inheritance is

described in the next section).

This looser connection in object-oriented languages between the statically-declared type of a variable and the actual

run-time type of the contents of the variable, enabled by the use of message passing to dynamically select the

appropriate implementation for a call, dramatically increases the potential reusability and applicability of client code.

Clients are further abstracted from implementation and representation issues by specifying only what operations are

required of objects, either explicitly using static type declarations or implicitly by the operations actually invoked, not

the implementation of the objects or even the precise interface or abstract data type of the objects. This level of

abstraction limits dependencies between clients and implementations to just those strictly required for correctly

a stack object

create

push

pop

isEmpty

top

a double-ended queue object

create

push

pop

isEmpty

top

push_bottom

pop_bottom

bottom

interchangeable to clients sending push and pop

6

performing the client’s task, and allows the client code to be used with implementations that had not been written or

even imagined at the time the client’s code was written.

2.2.1.2 Inheritance

Frequently, two data types may have similar implementations. This commonality may be separated out (factored) into

a third data type and then shared (inherited) by the two original data types. For example, the linked-list implementation

of double-ended queues may be very similar to the linked-list implementation of stacks, and consequently the

programmer could factor out the similar parts into a third module that is inherited by both linked-list-based stacks and

linked-list-based double-ended queues. In fact, it is likely that the double-ended queue could inherit directly from the

stack implementation without a third shared implementation being necessary. In this situation, the stack

implementation would play the role of a reusable implementation and make the implementation and maintenance of

the double-ended queue much easier.

Factoring enables programs to be modified more easily since there is only one copy of code to be changed; changes to

factored code are automatically propagated to the inheriting data types. Factoring also facilitates extensions, since the

shared objects provide natural places for new operations to be implemented and automatically inherited by many

similar data types. For example, the programmer could add a size operation to stacks and double-ended queues

would automatically receive the same capability via inheritance.

These hierarchies of related data types are a characteristic feature of object-oriented systems. Object-oriented

programming extends abstract data type programming as an organizing principle for programs by supporting

hierarchies of implementations; statically-typed object-oriented languages also support hierarchies or lattices of

interfaces or types as described in the previous section. These hierarchies offer a focus for the initial design problem,

a stack object

create

push

pop

isEmpty

top

a double-ended queue object

create (inherited)

push (inherited)

pop (inherited)

isEmpty (inherited)

top (inherited)

push_bottom

pop_bottom

bottom

inherits

7

a catalog of pre-designed, pre-implemented components upon which new applications can build, and a framework in

which new components can be integrated and made available to other programmers.

2.2.2 Implementation Effects

A client manipulates an object by sending it messages listed in the object’s interface. However, since object-oriented

languages allow several implementations to co-exist for any given interface, the method invoked for a particular

message send depends on the implementation of the receiver of the message. This implementation cannot always be

determined statically and in fact frequently may vary from one invocation to the next. Thus the system must be able

to determine the correct binding of the message send site to invoked method dynamically, potentially at each call. This

dynamic binding, while key to the expressive power of object-oriented programming, is the chief obstacle to good

performance of object-oriented systems.

Dynamic binding incurs the extra run-time cost needed to locate the correct method based on the implementation of

the message receiver object. This lookup involves an extra memory reference in some implementations (e.g., C++ and

Eiffel) and a hash table probe in others (e.g., Smalltalk-80 and Trellis/Owl), on top of the normal procedure call

overhead.

A more disastrous problem, however, is that dynamic binding prevents the inlining optimization used to reduce the

overhead of abstract data types. Inlining requires knowing the single possible implementation for an operation. This

requirement directly conflicts with object-oriented programming which purposefully severs the links between client

operation calls and the particular implementations they invoke. Consequently, in general dynamically-bound message

sends cannot be inlined to reduce the call overhead.

Inheritance can slow execution by requiring the run-time message dispatcher to perform a potentially lengthy search

of the inheritance graph to locate the method matching a message name. Consequently, most implementations of

message passing and inheritance use some form of cache to speed this search. Inheritance can also slow programs in

a more subtle way by encouraging programmers to write well-factored programs, which have a higher call density than

traditional programming styles. This overhead takes the form of messages sent to self, which would not have existed

had the program not been factored using inheritance.

2.2.3 Traditional Compromises

A pure object-oriented language, i.e., one that uses only message passing for computation and does not include non-

object-oriented features such as statically-bound procedure calls or built-in operators, offers the maximum benefit from

message passing and inheritance. Unfortunately, message passing slows down procedure calls with extra run-time

dispatching and prevents the crucial inlining optimizations that are needed to reduce the overhead of abstraction

boundaries. Since supporting a pure object-oriented language seems so inefficient, existing practical implementations

of object-oriented languages do not support a completely pure object-oriented model, instead making various

compromises in the name of efficiency.

Often language designers compromise by including non-object-oriented features or by extending an existing non-

object-oriented language with object-oriented features, as with C++ and CLOS. These languages include all the built-

in control structures and data types of the base non-object-oriented languages, and the base language features suffer

from none of the performance problems associated with object-oriented features. For example, C++ includes all the

built-in control structures available in C, and built-in data types such as integers, arrays, and structures may all be

manipulated using traditional C operators without extra overhead. However, these mixed languages have the serious

drawback that code written using the non-object-oriented features cannot benefit from any of the advantages of the

object-oriented features. For example, programs written to manipulate standard fixed-precision (e.g., 32-bit) integers

cannot later be used with arbitrary precision integers, even though both data types implement the same operations.

Additionally, code for collections of objects cannot be used to create a collection of fixed-precision integers, since

integers are not objects. Programmers of a hybrid language must choose between a well-written, reusable program and

good run-time performance.

Even languages that are supposedly pure object-oriented languages in which all data structures are objects and all

operations are dynamically-bound messages frequently “cheat” for the most common language features in an effort to

improve performance. For example, Smalltalk-80, widely regarded as one of the purest object-oriented languages,

hard-wires into the implementation the definitions of some common operations, such as + and < applied to integers,

8

preventing programmers from changing their implementation. Other operations such as ==, ifTrue:, and

whileTrue: are treated specially by the implementation and are not dynamically-bound operations at all; the single

implementation of each of these messages is built into the compiler and cannot be changed or overridden by the

programmer. They are simply built-in operations and control structures for Smalltalk, albeit written in normal message

sending syntax.

Most object-oriented languages limit the power of instance variables (parts of the representation of objects, like fields

of records). In these languages, instance variables are accessed directly by the methods in the object’s implementation,

rather than by sending messages to self to access instance variables. Accesses to them may then be implemented by

just a load or store instruction, significantly faster than normal dynamically-bound operations. Unfortunately, this

practice reduces the potential reusability of abstractions by preventing instance variables to be overridden by inheriting

abstractions in the same manner as dynamically-bound methods.

For example, a polygon data type might define a vertices instance variable containing a list of vertices making

up the polygon. The programmer might wish to define a rectangle data type as inheriting from the polygon data

type, but with a new representation: four integers defining thetop, bottom, left, and right sides of the rectangle.

The programmer could make rectangles compatible with polygons by overriding the vertices instance variable

with a vertices method that computed the list of vertices from the four integer instance variables. Unfortunately,

in most object-oriented languages overriding an instance variable is not possible, and so rectangle cannot inherit

directly from polygon as pictured. Trellis/Owl and SELF are two notable exceptions to this unfortunate practice.

Finally, object-oriented languages with static typing usually restrict the type lattice to be the same as the inheritance

graph: if one object inherits from another, then the child object must be a subtype of the parent, and if one type is a

subtype of another then it must inherit from the other. This restriction may perhaps be justified as a language

simplification. Some languages go even further, however, by restricting the inheritance graph to form a tree; an object

may inherit from only one other object. This restriction to single inheritance simplifies the implementation, allowing

relatively efficient implementations of dynamic dispatching using indirect procedure calls (e.g., the implementation of

virtual function calls in versions of C++ supporting only single inheritance). Unfortunately, when subtyping is tied to

inheritance of implementation, single inheritance can be very limiting to programmers. General abstract types such as

comparable and printable cannot be easily defined and used as supertypes of the appropriate objects, since any

particular object cannot be a subtype of more than one such abstract type. Supporting multiple supertypes for one

object imposes significant extra run-time overhead on message sends given existing implementation technology, as

described in Chapter 3.

a polygon object

polygon operations

a rectangle object

inherits

vertices

top
bottom
left
right

polygon and rectangle
operations

9

2.3 User-Defined Control Structures

2.3.1 Benefits to Programmers

Programs can be smaller and more powerful if the language allows arbitrary chunks of code to be passed as arguments

to operations. These chunks of code are called closures or blocks [SS76, Ste76] and enable programmers to implement

their own iterators, exception handlers, and other sorts of control structures. For example, the stack data type could

provide an operation called iterate that would take a closure as its argument. The operation would iterate through

the elements of the stack, invoking the closure on each element in turn. This arrangement would be similar to a

traditional for loop but could be defined entirely by the programmer using only abstract data types and closures. Like

the body of a for loop, a closure is lexically-scoped, meaning that it has access to the local variables of the scope in

which it is defined (e.g., the caller of the iterate operation). The stack data type might also provide an operation

named popHandlingEmpty that would take a closure as an argument and either pop the stack (if not empty) or

invoke the closure to handle the empty-stack error. In this situation, the closure would act like an exception handler.

Closures typically provide a way to prematurely exit computations, either using first-class continuations as in Scheme

[AS85, RC86, HDB90] or using non-local returns as in Smalltalk-80 or SELF. When returning non-locally, the closure

returns not to its caller (e.g., the popHandlingEmpty operation) but from its lexically-enclosing operation (e.g., the

caller of popHandlingEmpty). Thus non-local returns have an effect similar to return statements in C.

Closures can support all of the traditional control structures, includingfor loops, while loops, and case statements.

In an object-oriented language, even basic control structures such as if statements may be completely implemented

using closures and messages; the implementation of the if message for the true object is different than that for the

false object, for instance. Thus closures enable pure object-oriented languages to be defined without any built-in

control structures other than message passing, non-local returns, and some sort of primitive loop or tail-recursion

operation, simplifying the language and moving the definition of control structures into the domain of the programmer.

2.3.2 Implementation Effects

Unfortunately, straightforward implementations of control structures using closures introduces more run-time

overhead than traditional built-in control structures. Allocation and deallocation of closure objects bog down such

user-defined control structures when compared to built-in control structures which can usually be implemented by a

few compare and branch sequences. This allocation and deallocation cost is especially significant for extremely simple

control structures such as if statements. For looping statements such as while and for, the allocation and

deallocation cost can be amortized over the iterations of the body of the loop, but the extra procedure calling cost for

invoking the methods comprising the user-defined control structure and for invoking the closure object each time

through the loop still incurs a significant amount of overhead over the few instructions execution for a comparable

built-in control structure. In the SELF system a traditional for loop runs more than 20 methods during the execution

of the control structure, many of which are invoked for every iteration of the loop. In pure object-oriented languages

in which these procedure calls are really dynamically-bound messages, the cost becomes even greater, especially since

inlining of the user-defined code implementing the control structure becomes much harder.

2.3.3 Traditional Compromises

Because of the difficulty of efficient implementation, few languages support closures and user-defined control

structures. Most include only built-in control structures and require programmers to build their own iterator data

structures. Some, such as Trellis/Owl, provide built-in iterators and exceptions, supporting two of the most common

uses for closures. However, many kinds of user-defined control structures go beyond simple iteration and exception

handling, and these control structures cannot be implemented directly in Trellis/Owl.

Scheme provides first-class closures and continuations, but also provides a number of built-in control structures; these

built-in control structures are implemented more efficiently (and invoked more concisely) than are general user-defined

control structures using closures. Most Scheme programs rely heavily on these built-in control structures to get good

performance. Smalltalk-80 nominally relies entirely on user-defined control structures and blocks (Smalltalk’s term for

closures). Unfortunately, as mentioned in section 2.2.3, Smalltalk-80 restricts some common control structures such

as ifTrue: and whileTrue: so that the compiler can provide efficient implementations that do not create block

objects at run-time. The primary disadvantage of such restrictions, from the point of view of the Smalltalk programmer,

is that the large performance differential between the restricted control structures optimized by the compiler and

10

control structures defined by the user tempts the programmer to use the fast control structures even if they are less

appropriate than some other more abstract control structures. This implementation compromise thus discourages good

use of abstraction.

2.4 Safe Primitives

2.4.1 Benefits to Programmers

At the leaves of the call graph of a program are the primitive operations built into the system, such as object creation,

arithmetic, array accessing, and input/output. Frequently a primitive operation is defined only for particular types of

arguments. For example, arithmetic primitives are defined only for numeric arguments, and array access operations are

defined only for arrays and integer indices within the bounds of the corresponding array. Even procedure calls could

be considered primitive operations that are legal only as long as there is enough stack space for new activation records.

In many environments, especially compiled, optimized environments, the programmer is responsible for ensuring that

primitive operations are only invoked with legal arguments. If the program contains an error that leads to a primitive

being invoked illegally, the system can become corrupted and probably crash mysteriously sometime later in

execution. For example, C implementations do not check for array accesses out-of-bounds, and so an out-of-bounds

store into an array can corrupt the internal representation of another object. Subsequent behavior of the system

becomes unpredictable. Programs developed on such unsafe systems are extremely difficult to debug, since some

programming errors can lead to seemingly random behavior far away in time and space from the cause of the errors.

On the other hand, a safe or robust system always verifies for each invocation of a primitive operation that its

arguments are legal and that the primitive can be performed to completion without error. If the primitive call is illegal,

then a robust system either halts gracefully (for example by entering a debugger) or invokes some user-definable

routine or closure, thus enabling the programmer to handle the error. Robust programming systems make program

development much easier by catching programming errors quickly, giving the programmer a much better chance at

identifying the cause of the illegal invocation. Since a robust system never becomes internally corrupted as a result of

a programming error, the penalty for such errors is greatly reduced, speeding the debugging process.

2.4.2 Implementation Effects

Implementing safe primitives requires type checking and sometimes range checking (such as for array accesses out of

bounds) for arguments to primitives. With statically-typed non-object-oriented languages, the type checking of

primitive arguments can be done at compile-time. However, with object-oriented languages and dynamically-typed

languages, this type checking cannot in general be performed statically, thus incurring extra run-time overhead. Run-

time range checking in general cannot be optimized away even in statically-typed non-object-oriented languages.

2.4.3 Traditional Compromises

Few languages provide completely robust primitives. Most languages check the types of arguments to primitives,

either at compile-time (for statically-typed languages) or at run-time (for dynamically-typed languages), and some

check that array references are always in bounds (at least as an option). Few systems handle procedure call stack

overflow gracefully.

2.5 Generic Arithmetic

2.5.1 Benefits to Programmers

Most languages incorporate multiple numeric representations, such as integers and floating point numbers of various

ranges and precisions. These representations offer different trade-offs between accuracy and efficiency. Some

languages allow these numeric representations to be freely mixed in programs, and support automatic conversion from

one numeric representation to another. For example, a language supporting this kind of generic arithmetic might

include arithmetic primitives that handle overflows and underflows by returning results in representations with greater

range or precision than the original arguments to the primitives (or providing the means for programmers to implement

their own conversion routines). Languages with generic arithmetic relieve the programmer of the burden of dealing

11

with numeric representation issues. Code written with one numeric representation in mind becomes automatically

reusable for all other numeric representations without any explicit programmer interactions.

2.5.2 Implementation Effects

Generic arithmetic imposes significant run-time overhead. The system must perform extra run-time dispatching to

select an implementation of the numeric operation appropriate for the representation of the arguments. This

dispatching overhead is similar to that imposed by message passing; in fact, generic arithmetic can be viewed as an

object-oriented subpart of a language, albeit one that in an otherwise non-object-oriented language may not be user-

extensible. Generic arithmetic also requires extra run-time checking for overflows and underflows.

Overflows and underflows impose a serious indirect cost that is often overlooked when calculating the cost of generic

arithmetic. Since the representation of the result of an arithmetic operation may be different than the representation of

the operation’s arguments, the compiler cannot in general statically determine the representation of the result of a

numeric operation even if the compiler has determined the representation of the arguments. For example, even if the

compiler knows that the type of the arguments to an operation are represented as standard machine integers, the result

may be represented as an arbitrary-precision integer if an overflow occurs. Thus overflow checking limits the

effectiveness of traditional flow analysis to track the representations of numeric quantities.

2.5.3 Traditional Compromises

Because of these costs, few languages support generic arithmetic. Of those that do, several also provide alternative

representation-specific arithmetic operations that avoid the run-time overhead associated with generic arithmetic, but

also sacrifice the safety and expressiveness of generic arithmetic.

2.6 Summary

Object-oriented languages provide a number of important enhancements over traditional procedural programming

languages, among them abstract data types, message passing, and inheritance. User-defined control structures enhance

the abstract data type model, and when coupled with object-oriented features eliminates the need for built-in control

structures. Safe primitives are a must for an effective development environment. Support for generic arithmetic

increases both the programmer’s power and the program’s reliability.

Unfortunately, these desirable language features don’t come cheap. They impose significant implementation costs,

particularly in run-time execution speed. Abstract data types and user-defined control structures conspire to

dramatically increase the frequency of procedure calls, and dynamic binding both increases the cost of these procedure

calls and prevents direct application of traditional optimizations such as procedure inlining. Generic arithmetic and

safe primitives increase the expense of the basic operations at the leaves of the call graph.

The standard approach to solving these problems in existing language implementations is to cheat. Abstract data types

are compromised by distinguishing variables and functions in interfaces. Common control structures, operations, and

data types are built into the language definition, forcing programmers to choose between reusable, malleable programs

and execution speed. Generic arithmetic support is either non-existent or too expensive to use, and error-checking of

primitives is forgone in the name of execution speed.

SELF includes all the features described in this chapter as important, desirable language features. (The SELF language

will be described in detail in Chapter 4.) However, we were unwilling to cheat to get good performance. This dilemma

was the driving force that led to the research described in this dissertation.

12

